疫苗生产中DNA残留检测试剂盒


疫苗生产中DNA残留检测试剂盒

简要描述:产品是用地高辛(地高辛:英文名Digoxigenin,简称DIG;又称异羟基洋地黄毒甙元,是一种类固醇半抗原分子)标记的DNA探针,应用于分子杂交和随后的化学发光检测。检测主要分三阶段进行:1. DNA标记:根据随机引物标记技术,生成DIG地高辛标记的DNA探针。

详细介绍

产品咨询

疫苗DNA残留对人体的潜在危害

对所使用的疫苗,我们zui关心的是疫苗的效果和其安全性。现在很多疫苗是细胞培养疫苗,比如重组(CHO细胞)乙肝疫苗,Vero细胞狂犬病疫苗等大多数疫苗都是用细胞培养的方法生产,而对疫苗的纯化是关键问题,我们要尽可能的去除宿主细胞DNA和宿主蛋白。假若宿主细胞的DNA和蛋白同疫苗一起注入人体将会产生不可预料的后果。就以疫苗DNA残留为例,疫苗DNA残留可能造成插入突变﹑导致抑癌基因失活﹑癌基因被激活等,zui终造成疫苗使用者致癌。

 

疫苗DNA残留的相关法规

由于有如此潜在的危险性,所以许多机构对疫苗DNA残留制定了相关标准,1986年世界卫生组织规定用细胞系生产的疫苗DNA残留不能超过100 pg /支 ,而在1998年世界卫生组织认为细胞系生产的疫苗DNA残留不能超过10 ng /支,而在1997年美国药品食品卫生监督局规定在美国使用的细胞系疫苗DNA残留不能超过10 pg /支,中国规定的细胞系疫苗DNA残留不能超过100 pg /支。

所以在疫苗生产中要随时对DNA残留进行检测,以便知道每个过程除掉DNA残留的能力。在每一批产品中我们必须检测DNA残留,所以我们必须运用敏感且行之有效的对DNA残留定量的检测方法。通常规定每支疫苗DNA残留不能超过100 pg,也就大约等同于17个甚至更少CHO细胞基因组DNA的含量,对如此微量的DNA残留进行检测,所用的技术方法就必须相当敏感和稳定,现在对DNA残留定量的方法主要有以下三种:
1、分子杂交技术检测DNA残留
2、基于DNA结合蛋白的方法(Threshold® immunoassay)检测DNA残留
3、实时定量PCR法检测DNA残留

 

分子杂交技术检测DNA残留的原理和方法

分子杂交分析的基本原理是基于DNA探针检测变性而且固定在纤维素膜上的宿主细胞DNA。这些探针可以不依赖宿主细胞DNA来制备,例如用随机引物制备探针。探针上标记酶﹑生物素﹑放射性同位素﹑地高辛(Dig)等。由于地高辛标记核酸探针,操作方便、灵敏度高,已标记的探针在4℃贮存可达两年之久,方便随时应用,所以现在常采用地高辛标记核酸探针,用光标记法将光敏Dig标记到探针上,制成光敏-Dig-核酸探针,再与固定在膜上的靶核酸进行靶DNA分子杂交,使之与抗Dig-碱性磷酸酶结合,zui后可用不同的检测方式进行检测,发光检测和显色检测均可,灵敏度可达10pg以下(表 1  三种DNA残留检测方法的比较)。

 

基于DNA结合蛋白的方法(Threshold® Immunoassay)检测DNA残留的原理和方法

Threshold® Immunoassay分析系统是基于两种DNA序列非特异性蛋白,单链DNA(ssDNA)结合蛋白(SSB)和抗ssDNA 的单抗。检测的基本过程是当生物素—DNA单链结合蛋白和尿素酶—抗ssDNA 的单抗与变性的宿主细胞DNA结合zui终形成复合物,通过亲合素将此复合物连接到生物素—纤维素膜,在通过洗涤所有非特异性的被洗脱掉,zui后放于有尿素溶液的读数仪,尿素酶催化尿素分解成NH3和CO2 导致PH值发生变化,读数仪根据PH值的变化换算成DNA的量,从而达到检测DNA残留含量的目的。

 

实时定量PCR法检测DNA残留的原理和方法

荧光定量PCR是基于PCR扩增时,在加入一对引物的同时加入一个特异性的荧光探针,产物的增加可以通过荧光信号指示,通过实时监控PCR体系中的荧光信号,对样本中初始模板进行定量分析。定量PCR可实时检测产物量,通过加入已知浓度的标准样品绘制标准曲线,然后根据待测样品在标准曲线中的位置推算初始模板的浓度,从而达到检测DNA残留含量的目的。

 

三种检测DNA残留方法的比较

3种方法用来检测疫苗DNA残留都要对样品进行相应的处理,这对zui终的结果的准确性至关重要。而杂交相对对样品DNA的损失小,而用Q-PCR需要提取样品的DNA,损失较大。在我们选择那种方法时我们要考虑它的稳定性,敏感性,成本等以至找到*的性价比的方法(表 1),从表1 我们不难发现使用分子杂交的方法是一种比较可行经济实用的方法,目前国内也主要是用此方法。

表 1  三种DNA残留检测方法的比较

 

Hybridization

Threshold® Immunoassay

Q-PCR

特异性

物种特异性

无特异性

序列特异性

检测的zui小序列长度(bp)

50

600

150

抗干扰性和稳定性

++

+

+

所需时间(h)

48

6

2

敏感性(pg)

10

6

<1

初期花费($)

1200

>40000

>70000

地高辛(DIG):高灵敏度的非放射性核酸标记/检测体系

罗氏应用科学部(Roche Applied Science)是zui早致力于向用户提供非放射标记技术的公司之一,让更多的科研工作者们可以避免使用危险的放射性同位素。自1995年罗氏的地高辛产品上市以来,尽管陆续有许多出色的竞争者涉足这一领域,尽管有定量PCR技术的应用,DIG系统仍然是非放射性标记—检测技术的,被广泛地应用各种膜杂交及原位杂交技术中。 

      
   技术原理:

 

      地高辛标记技术源于一种从洋地黄类植物(毛地黄和毛花毛地黄)中提取的类固醇(Steroid)物质—— Digoxigenin  (DIG),在医学上可用于治疗各种急性和慢性心功能不全以及室上性心动过速、心房颤动和扑动等疾病。由于洋地黄植物的花和叶片Digoxigenin在自然界中的*来源,因此抗DIG的抗体不会与其他的生物物质结合,从而可以满足特异性标记的需要。这一点,正是DIG胜于生物素(Biotin)的地方——同样是小分子标记物,生物素广泛存在于各种组织中,对于灵敏度很高的标记检测实验来说,样品自身含有的内源生物素,就会对结果产生干扰。地高辛就能够很好地避免这个问题。

             
   技术特点:
        

      与放射性标记和检测技术相比较,DIG 系统具有一下多个优势:
            è    高灵敏度,*可满足实验需要,某些方面甚至可与放射性标记的灵敏度向媲美
            è    曝光时间短,结果显示时间以分钟计算,无需几小时甚至几天的自显影过程
            è    安全环保,不接触放射性物质,不会对环境造成污染
            è    探针可重复使用,zui少可以稳定储存一年
            è    可轻松进行探针拨离和重探
            è    凭借多年的经验和众多使用者的反馈意见,提供全面的应用指南

             
   应用领域:
      地高辛系统能够安全地标记DNA, RNA或是寡聚核苷酸探针,这些探针可以被广泛地应用在
            è     Southern blotting, dot blotting
            è     Northern blotting
            è     Array
            è     Colony hybridization
            è     In situ hybridization
            è     ELISA
             
   技术细节:
      DIG 通过一个含有11个碳原子的空间臂与尿嘧啶核苷酸上的C5位置相连,一定浓度的DIG标记的核苷酸可以通过DNA 
       polymerase (如E.coli DNA Polymerase, T4 DNA Polymerase, T7 DNA 
       Polymerase, Reverse Transcriptase, Taq DNA Polymerase )、RNA 
       polymerase (如SP6, T3或T7 RNA Polymerase)或是末端转移酶(Terminal 
       Transferase)的作用掺入到核苷酸探针中;也可通过随即引物标记(random primed labeling), 
       缺口平移(nick   translation),PCR,3’端标记/加尾或是体外转录制备带有DIG标记的探针。当然也可以通过化学合成的方法进行核苷酸的标记。
               
            Fig. Structure of Alkali-liable Digoxigenin(DIG)-dUTP
             
      对于DIG 标记探针的杂交检测,可选用连接有碱性磷酸酶(alkaline            phosphatase),过氧化物酶(peroxidase),荧光素(fluorescein),若丹明(rhodamine)或是胶体金(colloidal  gold)高亲和性的抗DIG抗体共轭物;也可选用不带任何共轭连接的抗DIG抗体和二级抗体。
             
      检测的灵敏度主要依赖于对不同抗DIG抗体共轭物显示方法的选择。以连接有碱性磷酸酶的抗DIG 抗体为例:即可以使用NBT或BCIP做底物的显色法,也可以使用HNPP荧光碱性磷酸酶底物,检测的灵敏度常规可达到0.1pg   (Souther blot)。