anshlabs胃泌酸调节素和甘列汀简介

anshlabs胃泌酸调节素和甘列汀简介

胃泌酸调节素和甘列汀:胃肠道和代谢疾病的新型生物标志物

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(仅供研究使用)

 

介绍

♦ 泌酸调节素和甘香素与胰高血糖素样肽-1、胰高血糖素样肽-2 和肽YY 一起由肠内分泌L 细胞和脑神经元细胞分泌。

♦ 泌酸调节素,它包含具有羧基末端延伸的胰高血糖素序列,是胰高血糖素和 GLP-1 受体的双重激动剂

♦ Glicentin,它包含泌酸调节素(因此也包括胰高血糖素)的序列,具有 N 端延伸,其受体仍然未知

♦ 与 GLP-1 相似,胃泌酸调节素和 glicentin 具有促胰岛素作用并发挥肠促胰岛素样作用。

♦ OXM 和 glicentin 抑制啮齿动物和人类受试者的食物摄入并刺激能量消耗。

♦ GLP-1 的半衰期很短,只有 1 到 2 分钟,而胃泌酸调节素的循环半衰期为 12 分钟,而 glicentin 的预测半衰期约为 30 到 35 分钟

 

临床研究

非酒精性脂肪性肝病 (NAFLD)的早期生物标志物

♦ 在早期 NAFLD、活检证实为 NAFLD 和非酒精性脂肪性肝炎 [NASH] 的个体中测量 GLP-1、GLP-2、glicentin、胃泌酸调节素、胰高血糖素、MPGF 的循环水平

♦ 与对照组相比,NAFLD 早期患者在口服葡萄糖耐量试验期间表现出更高的空腹 MPGF 和更低的甘列汀增量增加。

胃绕道手术后体重减轻的最佳预测指标

♦ 在 Roux-en-Y 胃旁路术 (RYGB) 和袖状胃切除术 (SG) 之前和之后 6 个月测量了 glicentin、胃泌酸调节素、GLP-1、肽 YY (PYY) 和 ghrelin 的餐后反应。

♦ 胃泌酸调节素和glicentin 的增强反应预示着更大的体重减轻,并且与能量密度的更大降低有关。GLP-1 与体重减轻之间没有关联

 

Ansh Labs 的泌酸调节素 ELISA (AL-139)Ansh Labs 的 Glicentin ELISA (AL-185)

 

 

 

参考

  • Pocai A. 胃泌酸调节素的作用和治疗潜力。摩尔代谢。201314;3(3):241-51。

  • Raffort 等人,对 glicentin 的见解,一种有前途的胰高血糖素前体家族肽。Biochem Med(萨格勒布)。2017 年 6 月 15 日;27(2):308-324。

  • Perakakis N,曼佐罗斯 CS。Glicentin 和泌酸调节素在人体代谢中的作用:新证据和新方向。临床内分泌代谢杂志。2020 年 8 月 1 日;105(8):dgaa329。

  • 多佐塞特人,。三种激素系统的靶向分析确定了与 NAFLD 的存在和严重程度相关的分子。临床内分泌代谢杂志。2020 年 3 月 1 日;105(3):e390–400。

  • Perakakis 等人,对最常见类型的减肥手术的胃肠激素循环水平和一年内体重减轻的预测价值:来自两项独立试验的证据。代谢。2019 年 12 月;101:153997。

  • Kim 等人,利拉鲁肽与安慰剂治疗对调节体重、胰岛素分泌和作用改善的循环前胰高血糖素衍生肽的影响:一项随机对照试验。糖尿病肥胖代谢。2020 年 11 月 2 日。doi:10.1111/dom.14242。

 

LBIS® 胰高血糖素样肽-1(GLP-1)(活性) ELISA试剂盒 LBIS® GLP-1(active) ELISA KIT

LBIS® 胰高血糖素样肽-1(GLP-1)(活性) ELISA试剂盒
LBIS® GLP-1(active) ELISA KIT

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

LBIS® GLP-1(active) ELISA KITLBIS® 胰高血糖素样肽-1(GLP-1)(活性) ELISA试剂盒                              LBIS® GLP-1(active) ELISA KIT

LBIS® 胰高血糖素样肽-1(GLP-1)(活性) ELISA 试剂盒

LBIS® 胰高血糖素样肽-1(GLP-1)(活性) ELISA试剂盒                              LBIS® GLP-1(active) ELISA KIT


胰高血糖素样肽-1(Glucagon-like peptide-1,GLP-1)是胰高血糖素前驱体的一部分。胰高血糖素前驱体于胰脏、小肠下部以及下丘脑中表达。该前驱体的构造中含有与糖代谢有关的各种各样的生理活性物质(胰高血糖素,肠高血糖素,胃泌酸调节素,GLP-1,GLP-2)的氨基酸序列。根据表达部位加工酶的特异性,胰脏主要分泌胰高血糖素,而小肠下部主要分泌肠高血糖素和胃泌酸调节素。GLP-1 和 GLP-2 则存在于胰高血糖素前驱体后半的结构中。GLP-1由37个氨基酸组成,有2种生物活性形式,分别为 GLP-1(7-37)和GLP-1(7-36)酰胺。两者都存在于小肠下部、胰脏和下丘脑中,GLP-1(7-36)酰胺在下丘脑中占免疫反应 GLP-1(IR-GLP-1)总量的 55-94%,在小肠中占 27-73%。但在胰脏中只有极少量存在。大部分哺乳类(如人类、大鼠、小鼠、牛、猪、狗等)的 GLP-1 结构相似。

 

GLP-1: hdeferhaegtftsdvssylegqaakefiawlvkgrg  

GLP 1(7-37): haegtftsdvssylegqaakefiawlvkgrg

GLP 1(7-36) amide: haegtftsdvssylegqaakefiawlvkgr-NH2

 

GLP-1 与小肠上部分泌的 GIP 统称为肠促胰素。该类激素是葡萄糖浓度依赖性方式促进胰岛素分泌。同时具有抑制胃肠道蠕动和胃液分泌、抑制胰高血糖素的释放、促进生长抑素的分泌、使食欲减退,促进肠上皮细胞生长、以及外周组织促进非胰岛素依赖性的葡萄糖的消耗,并促进细胞的生长的作用。有报告指出该类激素与垂体激素的分泌也有关系。

GLP-1(7-36)酰胺在生物体内代谢迅速,DPP-IV(dipeptidyl peptidase IV)会使其失去N-末端的两个氨基酸变为 GLP-1(9-36)酰胺,GLP-1(7-37)变为 GLP-1(9-37)后会失去活性。有报告指出,体外实验中,在犬的血浆中 GLP-1(7-36)酰胺的半衰期是为 61±9 分,GLP-1(7-37)为 132±16 分。因此 GLP-1 的测定,取样的时候有必要使用 DPP-IV 抑制剂。

此外,肠促胰素中的 GIP 则是有力促进 GLP-1 分泌的激素。回肠中 GLP-1 的分泌不是食物直接刺激肠道而产生的,而是由于胆碱能和肽类的刺激所产生的。

◆特点

● 短时间测定(完全反应时间:5小时)

● 微量样品(标准操作用量:10 μL)可测

● 使用对环境无害的防腐剂

● 全部试剂均为液体,可直接使用

● 精密的测定精度和高再现性

◆构成

 

组成

状态

容量

(A) 抗体固相化 96 孔板

洗净后使用

96   wells(8×12)/1 块

(B) GLP-1标准溶液(500 pg/mL

稀释后使用

200 μL/1 瓶

(C) 缓冲液

即用

60 mL/1 瓶

(D)生物素结合抗GLP-1抗体

稀释后使用

100 μL/1 瓶

(E) 过氧化物・抗生物素蛋白结合物

稀释后使用

100 μL/1 瓶

(F) 显色液(TMB)

即用

12 mL/1 瓶

(H) 反应终止液(1M H2SO4)※小心轻放

即用

12 mL/1 瓶

( I ) 浓缩洗净液(10×)

稀释后使用

100 mL/1 瓶

封板膜

4 张

使用说明书

1 份

◆交叉反应

※交差率是 1,000 pg/mL 浓度时的数据

动物类型

对象物质

反应性和反应率(%)

Mouse/Rat

GLP-1(7-36)amide

100

GLP-1(7-37)

<   0.1

GLP-1(1-37)

GLP-1(9-36)amide

GLP-2

Glucagon(1-29)

Insulin

Secretin

GIP

VIP

GRF

Bovine

Glucagon(1-29)

VIP

Porcine

Glucagon(1-29)

VIP

―:不存在交叉反应

◆样品信息

 

小鼠和大鼠的血清及血浆

10 μL/well(标准操作方法)

※测量中由于酶(DPP-IV 等)的影响,采血时请注意防止 GLP-1(7-36)酰胺的分解,再使用。

 

 

◆测定范围

 

1.56~50.0 pg/mL 【0.47~15.16 pmol/L(分子量3298)】(标准曲线范围)

7.8~250 pg/mL(样品量 10 μL)

3.9~125 pg/mL(样品量 20 μL)

◆Validation data

 

精度测试(组内变异)

 

样品

A

B

1

23.7

6.44

2

23.2

5.97

3

23.4

6.39

4

24.0

5.87

5

24.1

6.44

mean

23.7

6.22

SD

0.35

0.28

CV(%)

1.5

4.5

单位:pg/mL

 

 

重复性测试(组间变异)

 

测量日/样品

E

F

第0天

25.1

6.31

第1天

25.1

6.16

第2天

25.0

6.24

第3天

25.0

6.37

mean

25.0

6.27

SD

0.03

0.09

CV(%)

0.13

1.4

单位:pg/mL n=4

 

 

加标回收测试

 

样品C

添加量

实测值

回收量

回收率(%)

0.00

3.93

3.26

7.28

3.35

103

6.51

10.3

6.37

97.8

8.14

12.1

8.17

100

 

样品D

添加量

实测值

回收量

回收率(%)

0.00

11.8

7.16

19.1

7.30

102

14.3

25.5

13.7

95.8

21.5

32.4

20.6

95.8

 

 

稀释直线性测试

 

用稀释缓冲液分三次连续稀释2个血清样品的结果,直线回归方程的R2在0.997~0.9999之间。

相关资料


LBIS® 胰高血糖素样肽-1(GLP-1)(活性) ELISA试剂盒                              LBIS® GLP-1(active) ELISA KIT LBIS® 胰高血糖素样肽-1(GLP-1)(活性) ELISA试剂盒                              LBIS® GLP-1(active) ELISA KIT

ELISA试剂盒选择指南①②

ELISA试剂盒选择指③④

参考文献

1.

Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Baumeier C, Schluter L, Saussenthaler S, Laeger T, Rodiger M, Alaze SA, Fritsche L, Haring HU, Stefan N, Fritsche A, Schwenk RW, Schurmann A. Mol Metab. 2017 Oct;6(10):1254-1263.


 2.

Recombinant Mouse Osteocalcin Secreted by Lactococcus lactis Promotes Glucagon-Like Peptide-1 Induction in STC-1 Cells. Namai F, Shigemori S, Sudo K, Sato T, Yamamoto Y, Nigar S, Ogita T, Shimosato T. Curr Microbiol. 2017 Sep 13.


 3.

A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Aoki R, Kamikado K, Suda W, Takii H, Mikami Y, Suganuma N, Hattori M, Koga Y. Sci Rep. 2017 Mar 2;7:43522.


 4.

Effect of miglitol on the suppression of nonalcoholic steatohepatitis development and improvement of the gut environment in a rodent model. Kishida Y, Okubo H, Ohno H, Oki K, Yoneda M. J Gastroenterol. 2017 Mar 27.


 5.

Fermented vegetable and fruit extract (OM-XŪ) stimulates murine gastrointestinal tract cells and RAW264. 7 cells in vitro and regulates liver gene expression in vivo. Wakame K, Nakata A, Sato K, Mihara Y, Takahata M, Miyake Y, Okada M, Shimomiya Y, and Komatsu K. Integr Mol Med, 2017 http://www.omx.co.jp/files/attachments/8e3f7824b69bece18acca14baf314b11.PDF

 6.

Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Yang JY, Lee YS, Kim Y, Lee SH, Ryu S, Fukuda S, Hase K, Yang CS, Lim HS, Kim MS, Kim HM, Ahn SH, Kwon BE, Ko HJ, Kweon MN. Mucosal Immunol. 2017 Jan;10(1):104-116


 7.

An extract from pork bones containing osteocalcin improves glucose metabolism in mice by oral administration. Mizokami A, Wang D, Tanaka M, Gao J, Takeuchi H, Matsui T, Hirata M. Biosci Biotechnol Biochem. 2016 Jul 27:1-8.


 8.

Catecholamines Facilitate Fuel Expenditure and Protect Against Obesity via a Novel Network of the Gut-Brain Axis in Transcription Factor Skn-1-deficient Mice. Ushiama S, Ishimaru Y, Narukawa M, Yoshioka M, Kozuka C, Watanabe N, Tsunoda M, Osakabe N, Asakura T, Masuzaki H, Abe K. EBioMedicine. 2016 Jun;8:60-71.


 9.

Dipeptidyl peptidase 4 inhibitor reduces intimal hyperplasia in rabbit autologous jugular vein graft under poor distal runoff. Koyama A, Komori K, Otsuka R, Kajikuri J, Itoh T. J Vasc Surg. 2016 May;63(5):1360-70.


10.

Dipeptidyl peptidase-4 inhibitor, linagliptin, ameliorates endothelial dysfunction and atherogenesis in normoglycemic apolipoprotein-E deficient mice. Salim HM, Fukuda D, Higashikuni Y, Tanaka K, Hirata Y, Yagi S, Soeki T, Shimabukuro M, Sata M. Vascul Pharmacol. 2016 Apr;79:16-23.


11.

Intestinal Bile Acid Composition Modulates Prohormone Convertase 1/3 (PC1/3) Expression and Consequent GLP-1 Production in Male Mice. Morimoto K, Watanabe M, Sugizaki T, Irie J, Itoh H. Endocrinology. 2016 Mar;157(3):1071-81.


12.

Total gastrectomy-induced reductions in food intake and weight are counteracted by rikkunshito by attenuating glucagon-like peptide-1 elevation in rats. Taguchi M, Dezaki K, Koizumi M, Kurashina K, Hosoya Y, Lefor AK, Sata N, Yada T. Surgery. 2016 Jan 13. pii: S0039-6060(15)01029-6


13.

DPP-4 inhibition has beneficial effects on the heart after myocardial infarction. Akihiko Kubota, Hiroyuki Takano, Haixiu Wang, Hiroshi Hasegawa, Hiroyuki Tadokoro, Masanori Hirose, Yuka Kobaraa, Tomoko Yamada-Inagawa, Issei Komuro, Yoshio Kobayashi. Journal of Molecular and Cellular Cardiology, Volume 91, Feb. 2016, Pages 72–80


14.

The dipeptidyl peptidase IV inhibitor vildagliptin suppresses development of neuropathy in diabetic rodents: Effects on peripheral sensory nerve function, structure and molecular changes. Tsuboi K, Mizukami H, Inaba W, Baba M, Yagihashi S. J Neurochem. Volume 136, Issue 4, pages 859–870, Feb. 2016


15.

Intestinal Bile Acid Composition Modulates Prohormone Convertase 1/3 (PC1/3) Expression and Consequent GLP-1 Production in male mice. Morimoto K, Watanabe M, Sugizaki T, Irie JI, Itoh H. Endocrinology. 2016 Jan 20:en20151551.


16.

Hypoxia decreases glucagon-like peptide-1 secretion from the GLUTag cell line. Kihira Y, Burentogtokh A, Itoh M, Izawa-Ishizawa Y, Ishizawa K, Ikeda Y, Tsuchiya K, Tamaki T. Biol Pharm Bull. Vol.38(4), p514-21, 2015.


17.

Dietary obacunone supplementation stimulates muscle hypertrophy, and suppresses hyperglycemia and obesity through the TGR5 and PPARγ pathway. Horiba T, Katsukawa M, Mita M, Sato R. Biochem Biophys Res Commun. Vol.463(4), p846-52, Aug 2015.


18.

Combination of DPP-4 inhibitor and PPARγ agonist exerts protective effects on pancreatic β-cells in diabetic db/db mice through the augmentation of IRS-2 expression. Hirukawa H, Kaneto H, Shimoda M, Kimura T, Okauchi S, Obata A, Kohara K, Hamamoto S, Tawaramoto K, Hashiramoto M, Kaku K. Mol Cell Endocrinol. Jun 2015.


19.

Glucagon-like peptide-1 is specifically involved in sweet taste transmission. Takai S, Yasumatsu K, Inoue M, Iwata S, Yoshida R, Shigemura N, Yanagawa Y, Drucker DJ, Margolskee RF, Ninomiya Y. FASEB J. Vol.29(6), p2268-80, Jun 2015.


20.

Dipeptidyl-peptidase-4 inhibitor, alogliptin, attenuates arterial inflammation and neointimal formation after injury in low-density lipoprotein (LDL) receptor-deficient mice. Akita K, Isoda K, Shimada K, Daida H. J Am Heart Assoc. Vol.13;4(3):e001469, Mar 2015.


21.

Effects of sleeve gastrectomy and gastric banding on the hypothalamic feeding center in an obese rat model. Kawasaki T1, Ohta M, Kawano Y, Masuda T, Gotoh K, Inomata M, Kitano S.  Surg Today. 2015 Feb 28.


22.

Duodenal-jejunal bypass improves diabetes and liver steatosis via enhanced glucagon-like peptide-1 elicited by bile acids. Kashihara H, Shimada M, Kurita N, Sato H, Yoshikawa K, Higashijima J, Chikakiyo M, Nishi M, Takasu C. J Gastroenterol Hepatol. Vol.30(2), p308-15, Feb 2015.


23.

Mosapride citrate improves nonalcoholic steatohepatitis with increased fecal lactic acid bacteria and plasma glucagon-like peptide-1 level in a rodent model. Okubo H, Nakatsu Y, Sakoda H, Kushiyama A, Fujishiro M, Fukushima T1, Matsunaga Y, Ohno H, Yoneda M, Kamata H, Shinjo T, Iwashita M, Nishimura F, Asano T. Am J Physiol Gastrointest Liver Physiol. Vol.15;308(2), G151-8, Jan 2015.


24.

Glucagon-like peptide-1 production in the GLUTag cell line is impaired by free fatty acids via endoplasmic reticulum stress. Hayashi H, Yamada R, Das SS, Sato T, Takahashi A, Hiratsuka M, Hirasawa N. Metabolism. Vol.63(6), p800-11. Jun 2014.


25.

MK-0626, a selective DPP-4 inhibitor, attenuates hepatic steatosis in ob/ob mice. Ohyama T, Sato K, Yamazaki Y, Hashizume H, Horiguchi N, Kakizaki S, Mori M, Kusano M, Yamada M. World J Gastroenterol.Vol.20(43), p16227-35, Nov 2014.


26.

Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Mizokami A, Yasutake Y, Higashi S, Kawakubo-Yasukochi T, Chishaki S, Takahashi I, Takeuchi H, Hirata M. Bone. 16;69C:68-79. Sep 2014.


27.

Dietary sweet potato (Ipomoea batatas L.) leaf extract attenuates hyperglycaemia by enhancing the secretion of glucagon-like peptide-1 (GLP-1) . Nagamine R, Ueno S, Tsubata M, Yamaguchi K, Takagaki K, Hira T, Hara H, Tsuda T. Food Funct, Vol.5(9), p2309-2316, Aug 2014.


28.

Duodenal-jejunal bypass improves diabetes and liver steatosis via enhanced glucagon-like peptide-1 elicited by bile acids. Kashihara H, Shimada M, Kurita N, Sato H, Yoshikawa K, Higashijima J, Chikakiyo M, Nishi M, Takasu C. Journal of Gastroenterology and Hepatology, Aug 2014.


29.

Deletion of Hypoxia-Inducible Factor-1α in Adipocytes Enhances Glucagon-Like Peptide-1 Secretion and Reduces Adipose Tissue Inflammation. Kihira Y, Miyake M, Hirata M, Hoshina Y, Kato K, Shirakawa H, Sakaue H, Yamano N, Izawa-Ishizawa Y, Ishizawa K, Ikeda Y, Tsuchiya K, Tamaki T, Tomita S. PLoS One. 2014 Apr 4;9(4):e93856


30.

Glucagon-like peptide-1 production in the GLUTag cell line is impaired by free fatty acids via endoplasmic reticulum stress. Hayashi H., Yamada R., Shankar Das S., Sato T., Takahashi A., Hiratsuka M., Hirasawa N. Metabolism – Clinical and Experimental, 2014.


31.

Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Kodera AR, Shikata K., Takatsuka T., Oda K., Miyamoto S., Kajitani N., Hirota D., Ono T., Usui HK., Makino H. Biochemical and Biophysical Research Communications, Vol.443(3), p828-833, Jan 2014.


32.

Novel insight into the distribution of L-cells in the rat intestinal tract. Hansen CF., Vrang N., Sangild PT., Jelsing J. Am J Transl Res, Vol.5(3), p347-358, 2013.


33.

Cinnamtannin A2, a Tetrameric Procyanidin, Increases GLP-1 and Insulin Secretion in Mice. Yamashita Y, Okabe M, Natsume M, Ashida H. Bioscience, Biotechnology, and Biochemistry , Vol.77(4), 2013


34.

The protective roles of GLP-1R signaling in diabetic nephropathy:possible mechanism and therapeutic potential. H.Fujita, T.Morii, H.Fujishima, T.Sato, T.Shimizu, M.Hosoba, K.Tsukiyama, T.Narita, T.Takahashi, D.J.Drucker, Y.Seino, and Y.Yamada. Kidney International, 2013


35.

Beneficial effects of vildagliptin combined with miglitol on glucose tolerance and islet morphology in diet-controlled db/db mice. K.Ishibashi., A.Hara., Y.Fujitani., T.Uchida., K.Komiya., M.Tamaki., H.Abe., T.Ogihara., A.Kanazawa., R.Kawamori and H.Watada. Biochem Biophys Res Commun, Vol.440(4), p570-575, Nov 2013.


36.

Vildagliptin preserves the mass and function of pancreatic β cells via the developmental regulation and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Hamamoto S, Kanda Y, Shimoda M, Tatsumi F, Kohara K, Tawaramoto K, Hashiramoto M and Kaku K. Diabetes, Obesity and Metabolism,Vol.15(2), p153-163, Feb 2013.


37.

Osteocalcin Induces Release of Glucagon-Like Peptide-1 and Thereby Stimulates Insulin Secretion in Mice. Mizokami A, Yasutake Y, Gao J, Matsuda M, Takahashi I, Takeuchi H and Hirata M. PLoS ONE 8(2): e57375. Feb 2013


38.

DPP4 inhibitor vildagliptin preserves β-cell mass through amelioration of endoplasmic reticulum stress in C/EBPB transgenic mice. Shinobu Shimizu, Tetsuya Hosooka, Tomokazu Matsuda, Shun-ichiro Asahara, Maki Koyanagi-Kimura, Ayumi Kanno, Alberto Bartolome, Hiroaki Etoh, Megumi Fuchita, Kyoko Teruyama, Hiroaki Takahashi, Hiroyuki Inoue, Yusuke Mieda, Naoko Hashimoto, Susumu Seino, and Yoshiaki Kido. J Mol Endocrinol, Vol.49, p125-135, Oct 2012.


39.

Effects of long-term treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin on islet endocrine cells in non-obese type 2 diabetic Goto-Kakizaki rats. Inaba W, Mizukami H, Kamata K, Takahashi K, Tsuboi K and Yagihashi S. European Journal of Pharmacology,Vol.691(1-3), p297-306, Sep 2012.


40.

The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves β-cell mass in non-obese diabetic mice. Jacob Jelsing, Niels Vrang, Soren B van Witteloostuijn, Michael Mark and Thomas Klein. J Endocrinol, Vol.214, p381-387, Sep 2012.


41.

Neural and humoral changes associated with the adjustable gastric band: insights from a rodent model. J Kampe, A Stefanidis, S H Lockie, W A Brown, J B Dixon, A Odoi, S J Spencer, J Raven and B J Oldfield. International Journal of Obesity, 27 Mar 2012.


42.

Neural and humoral changes associated with the adjustable gastric band: insights from a rodent model. J Kampe, A Stefanidis, S H Lockie, W A Brown, J B Dixon, A Odoi, S J Spencer, J Raven and B J Oldfield. International Journal of Obesity, 27 Mar 2012.


43.

Mate Tea(Ilex paraguariensis)Promotes Satiety and Body Weight Lowering in Mice:Involvement of Glucagon-Like Peptide-1. G, M, E, Hussein., H, Matsuda., S, Nakamura., M, Hamao., T, Akiyama., K, Tamura., and M, Yoshikawa. Biol.Pharm.Bull. Vol.34(12), p1849-1855, 2011.


44.

5-Hydroxy-eicosapentaenoic acid is an endogenous GPR119 agonist and enhances glucose-dependent insulin secretion. R, Kogure., K, Toyama., S, Hiyamuta., I, Kojima., S, Takeda.  Biochemical and Biophysical Research Communications Vol.416(1-2), p58-63, 2011.


45.

GLP-1 Secretion in Response to Oral and Luminal Palatinose (Isomaltulose) in Rats. T,Hira.,M,Muramatsu.,M,Okuno.and H,Hara. J Nutr Sci Vitaminol, Vol.57, p30-35, 2011.


46.

Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. C,Arai.,N,Arai.,A,Mizote.,K,Kohno.,K,Iwaki.,T,Hanaya.,S,Arai.,S,Ushio.,S,Fukuda. Nutrition Research, Vol.30(12), p840-848, 2010.


47.

Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy. Ohara-Imaizumi,M.,Aoyagi,K.,Akimoto,Y.,Nakamichi,Y.,Nishiwaki,C.,Kawakami,H.and Nagamatsu,S. Biochemical and Biophysical Reseach Communications, Vol.390, p16-20, 2009.


产品列表
产品编号 产品名称 产品规格 产品等级 备注
637-15129 (AKMGP-011) LBIS® GLP-1(Active) ELISA Kit
LBIS® 胰高血糖素样肽-1(GLP-1)(活性) ELISA试剂盒 
96 tests

胰高血糖素ELISA试剂盒 Glucagon-Like ELISA kit

胰高血糖素ELISA试剂盒
Glucagon-Like ELISA kit

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

胰高血糖素ELISA试剂盒胰高血糖素ELISA试剂盒                              Glucagon-Like ELISA kit


原理

  Glicentin:肠高血糖素(Glicentin)是69个氨基酸的多肽,包含胰高血糖素和胃泌酸调节素两部分序列。在哺乳动物的小肠中,胰高血糖素原经过加工后可形成肠高血糖素、胃泌酸调节素和胰高血糖素样肽-1(GLP-1)、胰高血糖素样肽-2(GLP-2)。



优点、特色

●  简单快速

●  高特异性

●  超灵敏度


更多ELISA 试剂盒

糖尿病/肥胖症


产品编号

产品名称

规格

样品类型

 检测范围

YII-YK080-EX

PYY EIA Kit (Human)

96 孔

血清、血浆

 0.082-20 ng/mL

YII-YK081-EX

PYY EIA Kit (Mouse/Rat)

96 孔

血清、血浆

0.15-12.5 ng/mL

YII-YK090-EX

Glucagon EIA Kit (Rat/Human/Mouse)

96 孔

血浆

50-10000 pg/mL

YII-YK230-EX

Obestatin EIA Kit (Mouse/Rat)

96 孔

血清

0.082-20 ng/mL

YII-YK231-EX

Obestatin EIA Kit (Human)

96 孔

血清、血浆

0.231-25 ng/mL

YII-YK170-EX

17ß-Estradiol EIA Kit

96 孔

培养上清

16.5-4000 pg/mL

YII-YK180-EX

Estrone EIA Kit

96 孔

培养上清

4.8-5000 pg/mL



产品列表
产品编号 产品名称 产品规格 产品等级 备注
YII-YK111-EX Glicentin, EIA
 肠高血糖素ELISA试剂盒
1 kit
YII-YK140-EX Glucagon-Like Peptide 2 EIA
 大鼠胰高血糖素样肽2(GLP-2)ELISA试剂盒
1 kit
YII-YK141-EX Glucagon-Like Peptide 2 EIA
 人胰高血糖素样肽2(GLP-2)ELISA试剂盒
1 kit
YII-YK142-EX Glucagon-Like Peptide 2 EIA
 小鼠胰高血糖素样肽2(GLP-2)ELISA试剂盒
1 kit
YII-YK160-EX GlucagonLike Peptide 1 EIA KIT
 胰高血糖素样肽1(GLP-1)ELISA试剂盒
1 kit

​anshlabs胰高血糖素优势

 

anshlabs胰高血糖素优势

简介:胰高血糖素是由胰高血糖素基因编码的一种160个氨基酸的前激素,称为前胰高血糖素,可以加工的几种蛋白质之一。胰高血糖素前体在胰腺中的作用导致循环中29个氨基酸激素胰高血糖素的水平,胰高血糖素在调节血糖水平中起着重要的生理作用。前胰高血糖素也在胃肠道中产生,在胃肠道中,含有整个胰高血糖素序列的两种较大的蛋白质,胰升蛋白和氧调节蛋白被分泌到血液中。由于不同的循环蛋白含有完整的胰高血糖素序列,因此准确测量血液中的胰高血糖素具有挑战性,需要使用针对N端和C端的抗体进行分析。

 

 

Ansh实验室筛选了无数单克隆抗体,并测试了许多分析验证方案,以确定最佳抗体对。我们确信,我们的胰高血糖素ELISA试剂盒将在胰高血糖素检测方面建立新的标准,使研究人员能够更准确地检测糖尿病和胰岛素替代疗法中的胰高血糖素异常。

尽管胰高血糖素测试已经存在了几十年,但它在很大程度上仍然是一种研究测试,因为胰高血糖素测试的特异性足以让研究人员对结果有信心,这是一种复杂样本提取的耗时2天和3天的分析。当前商用分析的一个显著限制是,用于测量外周循环中胰高血糖素的方法缺乏标准化和可交换性。此外,这些方法设计的差异不仅影响定量结果,还影响与格列清和氧调节蛋白交叉反应的分析特异性。这种差异影响胰高血糖素测量的解释,并可能影响其研究的有效性和临床实用性。事实上,丹麦Jens J.Holst小组于2014年进行的两项研究表明,商用胰高血糖素免疫分析缺乏获得血液中胰高血糖素准确测量所需的特异性、敏感性、动态范围和精度。

 

ANSH实验室优势

人类样本量为50μL,大鼠样本量为25μL,无需提取,无需特殊收集管。
对2.4 pg/mL(0.7 pmol/L)敏感;分析测量范围为7-314 pg/mL(2.1-94.2 pmol/L),可对高血糖和低血糖样品进行准确定量。
简单的两步程序,在RT下培养2.5小时,避免了当前胰高血糖素分析中固有的复杂或过夜程序。
测量胰高血糖素(1-29),对胰升血糖素、氧调节素、GLP-1、GLP-2或GRPP没有检测到交叉反应。


ANSH实验室优势

 

胰高血糖素是代谢研究中一种有用的研究工具
涉及:
糖尿病
胰高血糖素
胰腺炎
胰腺肿瘤
GLP-1治疗中的治疗监测
饮食失调
成人生长激素缺乏
胰岛素敏感性和抵抗
肥胖

ELISA 96孔
方法
定量两步夹心免疫分析
孵育时间
室温下共培养2.5小时
近似动态范围7点,7-314 pg/mL(2.1-94.2 pmol/L)
体贴
2.4微克/毫升(0.7 pmol/升)
样本大小/类型
50μL/K2 EDTA血浆(无需提取)
保质期
24个月

订购信息和相关分析
胰高血糖素
96孔ELISA
AL-157 FDA,CE
格列钦
胰岛素C肽
大鼠/小鼠氧调节蛋白
氧调节蛋白
AL-185
AL-151
AL-192
AL-139
96孔ELISA
96孔ELISA
96孔ELISA
96孔ELISA
GLP-1
AL-172
96孔ELISA
GLP-2
AL-174
96孔ELISA